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The onset of instability is investigated in a triply diffusive fluid layer in which the 
density depends on three stratifying agencies having different diffusivities. It is 
found that, in some cases, three critical values of the Rayleigh number are required 
to specify the linear stability criteria. As in the case of another problem requiring 
three Rayleigh numbers for the specification of linear stability criteria (the rotating 
doubly diffusive case studied by Yearlstein 1981), the cause is traceable to the 
existence of disconnected oscillatory neutral curves. The multivalued nature of the 
stability boundaries is considerably more interesting and complicated than in the 
previous case, however, owing to  the existence of heart-shaped oscillatory neutral 
curves. An interesting consequence of the heart shape is the possibility of ‘quasi- 
periodic bifurcation ’ to convection from the motionless state when the twin maxima 
of the heart-shaped oscillatory neutral curve lie below the minimum of the stationary 
neutral curve. In  this case, there are two distinct disturbances, with (generally) 
incommensurable values of the frequency and wavenumber, that simultaneously 
become unstable a t  the same Rayleigh number. This work complements the earlier 
efforts of Griffiths (1979a), who found none of the interesting results obtained 
herein. 

1. Introduction 
If gradients of two stratifying agencies, such as heat and salt, having different 

diffusivities are simultaneously present in a fluid layer, a variety of interesting 
convective phenomena can occur which are not possible in a singly stratified or singly 
diffusive fluid. The case of two stratifying agencies has been the subject of extensive 
theoretical and experimental studies, which have been reviewed by Turner (1973, 
1974, 1985), Schechter, Velarde & Platten (1974), Huppert & Turner (1981a), and 
Platten & Legros (1984). 

It has been recognized previously (Griffiths 1979a*; Turner 1985) that there are 
important fluid mechanical systems in which the density depends on three or more 
stratifying agencies having different diffusivities. Examples of what might be called 
multiply diffusive convection include the solidification of molten alloys, geothermally 
heated lakes, magmas and their laboratory models, and seawater. 

I n  the first instance, there are many technologically important alloys that contain 
significant mass fractions of three or more metallic elements. Among these are a 
number of nickel-based superalloys (Giamei & Kear 1970) used in turbine blades and 
other high-strength applications. When ingots of these materials are grown by 
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directional solidification employing cooling from below, the rejection of solutes a t  the 
growing interface leads to  the development of concentration gradients, If the solutes 
have higher partial molar densities than the bulk melt, this configuration may be 
convectively unstable. Given that the planar interface is typically morphologically 
unstable (Coriell et al. 1987) a t  solidification rates of practical interest, convection 
may be important in both the interdendqitic ‘mushy zone ’ and in the overlying fluid, 
as discussed by Chen & Chen (1988) for the binary case. In this light, the potential 
importance of convection in determining macrosegregation in nickel-based super- 
alloys and other multicomponent alloy-systems is clear. 

An ther application stems from advances in instrumentation and data reduction 
techniques which have led to renewed interest among physical chemists in the 
measurement of multicomponent diffusion coefficients. This has in turn stimulated 
recent work on the onset of convective instability in isothermal ternary (i.e. three- 
component) fluids (McDougall 1983 ; Miller & Vitagliano 1986 ; Wells 1986), in which 
there are four independent diffusion coefficients (including cross-terms). Lcaist &, 
Noulty (1985) have suggested that the tools are now available for measurement 
of the nine diffusion coefficients characterizing a quaternary (four-component) fluid, 
for which the relevant theory was developed earlier by Kim (1966, 1969), and have 
now measured the nine independent quaternary diffusion coefficients in the system 
H,O-KCl-KH,PO,-H,PO, (Noulty & Leaist 1987). In  this case, as well as in the case 
of a non-isothermal ternary fluid, there are three independently diffusing stratifying 
agencies. By analogy with the doubly diffusive case in which the density depends 
on two independently diffusing stratifying agencies, we refer to the isothermal 
quaternary and non-isothermal ternary cases as being ‘triply diffusive ’. 

Previous work on the stability of isothermal four-component fluids dates to the 
analytical work of Kim (1970). Kim developed necessary conditions for the existence 
at  all times of a hydrostatically stable density gradient (i.e. density decreases 
monotonically upward) in a four-component fluid subject to various initial and 
boundary conditions. He also developed (different) sufficient conditions for 
hydrostatic stability. If we are to judge from the title and results of his paper, Kim 
was apparently unaware of the fact that even in the doubly diffusive case, a fluid 
layer with hydrostatically stable density stratification can be dynamically unstable. 
Griffiths (19794, on the other hand, considered the properly formulated convective 
stability problem with off-diagonal transport coefficients (i.e, cross-term diffusion 
coefficients and, in the non-isothermal ternary case, the Dufour and Soret coefficients) 
equal to zero and performed a linear stability analysis. Since the present paper was 
submitted for publication, Moroz (1989) has, in the context of a nonlinear stability 
analysis, considered the linear stability problem originally treated by Griffiths. 
Related experimental work has also been reported by Griffiths (19793, c )  and 
Huppert & Turner (1981b) on convection in triply diffusive Newtonian fluids. 
Rudraiah & Vortmeyer (1982) and Poulikakos (1985) have reported calculations on 
the onset of convection in a triply duffusive fluid saturating a porous medium. 

In this paper, we consider the problem previously studied by Griffiths (1979a) and 
Moroz (1989). Because our primary focus is on the elucidation of the basic linear 
instability mechanisms, we have restricted the analysis to the simple boundary 
conditions employed in the previous investigations. Our work differs from Grifiths’ 
in that we show that his conclusion ‘that marginal stability of oscillatory modes 
occurs on a hyperboloid in Rayleigh number space, but the surface is very closely 
approximated by its planar asymptotes for any diffusivity ratios’ is incorrwt for a 
number of diffusivity ratios, including those corrcsponding to thc KCI NaC1- 
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sucrose-H,O system studied by Griffiths. Our work also differs from both previous 
investigations in that we do not assume that the only critical wavenumber is that 
which corresponds to the linear onset of motion in singly and doubly diffusive fluids. 
This leads to a ‘Hopf-Hopf’ bifurcation and the possibility of the motionless basic 
state losing its stability through the onset of quasi-periodic motion. Thus, the triply 
diffusive case is capable of supporting several remarkable departures from what 
occurs in the singly and doubly diffusive cases. The results overlooked by Griffiths 
and Moroz are reminiscent of those found by Pearlstein (1981) for the onset of motion 
in a rotating doubly diffusive fluid layer; both cases illustrate the necessity of 
systematically investigating the topology of the neutral curves in hydrodynamic 
stability problems. 

2. Linear stability analysis 
2.1. Disturbance equations and dispersion relation 

We begin with the linear perturbation equations (2.4) and boundary conditions of 
Griffiths (1979a) for a layer of thickness L and infinite horizontal extent bounded 
above and below by stress-free boundaries a t  which the concentrations and 
temperature are held fixed. We make the Boussinesq approximation and neglect the 
off-diagonal (Soret, Dufour, and cross-diffusion) contributions to the fluxes of the 
stratifying agencies. We then have 

and (&v)e i  = R~~ all. (i = i , 2 , 3 ) ,  

where the Bi are dimensionless concentration or temperature perturbations and $ is 
a two-dimensional stream function. The boundary conditions considered by Griffiths 
are 

The restriction to a two-dimensional analysis is possible on account of the one- 
dimensionality of the basic stat,e and the horizontal isotropy of the problem. 

Following Griffiths, we define ri = K i / K 1  (i = 1,  2, 3) as the diffusivity ratios, 
Pr = v / K 1  as the Prandtl number, and the Rayleigh numbers R, = L 3 g P i A C i / ( ~ ~ 1 )  
for i = 1 ,  2, 3, where pi relates the fluid density to  the ith stratifying agency 
through the equation of state 

r 3  1 

Here, pm is the density at a reference state m and Ci denotes the departure of the 
concentration or temperature of the stratifying agency i from its value at state m. 
Finally, v is the kinematic viscosity and AG, is the total variation of stratifying 
agency i between the horizontal boundaries. By operating on (2.1) with 

L, = (&.vz), 
j-1 
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(2.2), and letting $ = exp(rt+ik,x)sinnxz, we obtain 

[(T+rj(n2 7c2 + k2)] 
3 3  

j=1 

= -k2 C Ri n [a+rj(n2n2+k2)],  (2.3) +, j=1 
l + t  

where k is the magnitude of the horizontal wavevector k = (k , ,  0) and n is the vertical 
wavenumber. 

Observing that r1 is unity, letting yn = n2x2+k2,  and setting a = O+iw, we 
rearrange (2.3) to 

y: Pr - w2 yn r2 y i  + w2 r3 y; + w2 
-R2 2 2 -R3 2 2 kZ Pr r2 yn + w2 r3 yn i- w2 

R, = 

-R3 2 73-1  2 1, (2.4) 
k2 P r  7 3 y n + w 2  

+ iwy, 
which can be written as 

Rl = fl(k, w , p r ,  r2, r3,R2,R3,  n) +iwynf2(k, @,I+, 7 2 ,  r3,R2,R3, n),  

where w is the frequency and fi and f 2  are real-valued functions of the indicated 
arguments. Equation (2.4) is used to find the critical value(s) of R,, which must be 
real, by requiring either w = 0 or f2 = 0. 

The w = 0 case corresponds to steady onset with one temporal eigenvalue crossing 
the imaginary axis a t  = 0. Thus, 

is the Rayleigh number above which the layer is unstable with respect to steady 
onset. To find the critical wavenumber corresponding to Rs, we equate to zero the 
derivative of (2.5) with respect to k,  and find k = nx/z/2. Thus, the critical Rayleigh 
number for steady onset is 

(2.6) 
27n4 R, R, 

4 7 2  7 3 '  

R;.crit = 

where it is clearly necessary to consider only n = 1.  
For oscillatory onset w is non-zero, which requires f2 = 0 in (2.4), giving 

Pr+ 1 r2-  1 r3-  1 
V2i-T- R2 r 2 y n + w  2 2 2---R, r3yn+w2=0.  2 2 

This can be rewritten as a dispersion relation which is quadratic in w 2 :  

04yn(Pr + 1)  + w2 {y",Pr + 1 )  (7: + 7-3 + k2 Pr [R2( 1 - r2)  + R3( 1 - r3) ]  j 

+ yi{y:(Pr+ 1) rEr:+ k2Pr [R2( 1 - r2 )  +R3( 1 - r3)  r?Jj = 0 

or symbolically as a(k2)U4+P(k2)w2+Y(k2)  = 0. (2.7) 

2.2. Topology of the neutral curves 
Equation (2.7) implies that if ,8(k2) < 0 and y(k2) > 0 for some wavenumber, then 
there may exist two real positive values of w2,  corresponding to two different onset 
frequencies for that value of k .  To each such frequency there corresponds a Rayleigh 
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number RY on the oscillatory neutral curve. The necessary conditions for the 
existence of two frequencies are then 

and 

( 2 . 8 ~ )  

(2.8b) 

which are found from the conditions /3(kz)  < 0 and y ( k 2 )  > 0. 
We note that for fixed T~ and 73 satisfying ( 1  - ~ , ) ( 1 - 7 ~ ) ( 7 ~ - 7 ~ )  + 0, (2.8a, b)  will 

be satisfied in exactly one quadrant of the (R,, R3)-plane. The condition that the 
diffusivities be distinct from unity and each other simply requires that the fluid be 
really triply diffusive. Moreover, we note from (2.8a, b )  that for R, < 0 and R3< 0, 
we cannot have two onset frequencies a t  the same k. That is, a t  least one of these 
stratifying agencies must be stabilizing. 

= iw and rewriting the 
real and imaginary parts of (2 .3)  as 

To find the extremal value(s) or RY, we begin by setting 

w4yn-w2  [ y i f l - k z P r ( R ~ + f z ) ] + ~ ~ P r  [ ~ : f ~ - k ~ ( I t y f ~ + f , ) ]  = 0 (2 .9a)  

and -w3  d f 5  +OYn [!&f6- k 2 P r ( R y f 7  +f8)1 = O, (2.9b) 

where yn has been defined and 

fl = ~ , T ~ + ( P ~ + ~ ) ( T ~ + T ~ ) + P T , ’  f ,  = R,+R3, f3 = 7 2 7 3 ,  f4 =R,73+R372, 

f5 = P r + i + ~ , + 7 ~ ,  f6 = 7 , ~ ~ ( P r + l ) + P r ( 7 ~ + 7 ~ ) ,  

fs = R,( 1 + 7 3 )  +R3( 1 + 7 2 ) .  

On the oscillatory neutral curve, w vanishes only at 
elsewhere (2.9b) can be divided by o to yield 

2 - y i f 6  - k2Pr(RYf7 + f S )  w -  
f 5  Y n  

Substituting (2.10) into (2.9a), we obtain 

.f7 = 7 z + 7 3 ,  

the bifurcation points, so 

(2.10) 

(2.11) 

where 

f 9  = f i  - f l f 5 f 6  + P r f 3 f E 9  f10 = - 2f6 f7  + f 5 f 6  + f l f 5 f 7  - f 3 f E 9  

fll = - 2 f 6 f 8  + f Z f 6 f 6  + f l f 5 f 8  -f4fi, flZ = f 7  -f5, f 1 3  = f 8  - f 2 f 5 ‘  

Equation (2 .11) ,  which is satisfied on the oscillatory neutral curve, can be written as 
Fl(k, Ry) = 0, so that at the extremal values of Ry, we have 8Fl/ak = F, = 0, which 
gives 

Thus, the extremal values of Ry occur a t  either 

or 

(2.12a) 

(2.12b) 
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For the first case, (2.12a) yields y i /k2  = 27n4n4/4, which is substituted into (2.11) 
to  obtain 

27n4 n4 
~ r 2 f 7 f 1 2 ( ~ : ) 2 + ~ r 2 ( f ~ f 1 3  + f S f i Z )  +T 

7 2 W  x8 27n4 7t4 
f9+, Prf i ,+Pr2f8f i ,  = 0. (2.13) 

-k 16 

For fixed values of r2,  T,, R,, R,, and Pr, (2.13) is a quadratic in R: which has zero, 
one, or two real solutions. For each solution, the sign of w 2  in (2.10) must be checked 
to see whether the frequency is real. Thus, there may be zero, one, or two physically 
meaningful extremal values of RY on the oscillatory neutral curve for k = nx/2/2 
(corresponding to 3k2 - yn = 0). 

In  the other case, rearrangement of (2.12b) followed by substitution into (2.11) 

Equation (2.14) may have zero, one, or two physically meaningful ( w Z  2 0) extrcmal 
solutions at, wavenumbers other than k = nx/2/2. By defining 

f i 4  = - f'r( fin R? + fi i 1 I (2f9 ) 1 

we can rewrite (2.12b) as 
(n2 x 2  + k2), - k2fi4 = 0. (2.15) 

It can be shown that (2.15) must have zero or two positive roots. Thus, for each 
physically meaningful value of R i  satisfying (2.12b), there are two extrema on the 
oscillatory neutral curve with k + nn/2/2. If there are two extrema (k $: nn/2/2) at  
one RY and two extrema at k = nx/2/2, then it can be shown that the oscillatory 
neutral curve is heart-shaped (figure 1) .  This result differs from the other known case 
in which two frequencies and Rayleigh numbers exist on the neutral curve for the 
same wavenumber (Pearlstein 1981), in which case the closed oscillatory neutral 
curve was found to have a single minimum and a single maximum. 

Three types of neutral curves in the (Rl, k)-plane can exist : 
(i) a stationary neutral curve with no oscillatory neutral curve, 
(ii) a stationary neutral curve accompanied by an oscillatory neutral curve to 

which i t  is connected a t  one or two bifurcation points, and 
(iii) a stationary neutral curve accompanied by a closed oscillatory neutral curve 

having no bifurcation points. 
In this context, a bifurcation point on the stationary neutral curve is one at  which 

the oscillatory neutral curve intersects the stationary neutral curve and the 
frequency on the oscillatory neutral curve approaches zero as the intersection is 
approached. These points are to be distinguished from those in the (Ri, k)-plane a t  
which the stationary and oscillatory neutral curves intersect but a t  which the 
frequency on the oscillatory curve does not approach zero a t  the intersection (see 
$3). The latter points merely correspond to coincidental crossings of the stationary 
and oscillatory neutral curves, as discussed earlier (Pearlstein 1981). 

As in the rotating doubly diffusive problem, the closed oscillatory neutral curves 
were found by a non-iterative method, the key feature of which is its ability to 
analytically decide the existence question for these closed curves without actually 
searching for them in the (R,,k)-plane. This is accomplished by first locating any 
bifurcation points and points of infinite slope on the oscillatory neutral curve. The 
existence of bifurcation points is decided by setting w = 0 in (2.7) and considering the 
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k 
FIGURE 1. Topology of a heart-shaped oscillatory neutral curve 

equation y ( k 2 )  = 0. It is easily shown that there are either zero or two distinct 
positive values of k2 that satisfy this equation, corresponding to either zero or two 
bifurcation points. 

Points of infinite slope occur a t  those wavenumbers where the number of 
branches on the oscillatory neutral curve changes from zero to two and vice versa. 
At these points, the number of allowable frequencies changes from zero to two; 
thus we compute the wavenumbers a t  the points of infinite slope by solving 
, @ ( k 2 ) - 4 a ( k 2 ) y ( k 2 )  = 0 from (2.7). Although this equation can be satisfied for zero, 
two, or four positive values of k 2 ,  it can be shown that /3(k2)  is negative (and hence 
w2 > 0) a t  no more than two values of k2 a t  which the discriminant of (2.7) 
vanishes. 

If there are no bifurcation points and no points of infinite slope, then no oscillatory 
neutral curve exists, because such a curve must be either connected to  the stationary 
neutral curve (at  the bifurcation points) or closed (and have two points of infinite 
slope). 

If there are two bifurcation points and no points of infinite slope, then the neutral 
curves have the t,opology shown in figure 2(a) .  The oscillatory neutral curve is a 
single-valued function of k and exists only between the wavenumbers kbl and k,, of 
the two bifurcation points. 

I n  the event that there are two bifurcation points and two points of infinite slope, 
the neutral curves have the topology shown in figure 2 ( b ) .  The oscillatory neutral 
curve exists between the wavenumbers k,, and k,, a t  which its slope is infinite ; it is 
double-valued between k,, and k,, and between kb2 and kS2,  and single-valued 
between kbl and kb2. 

If there are two points of infinite slope and no bifurcation points, the neutral 
curves will have the topology shown in figures 2 (c)  or 2 ( d ) .  The oscillatory neutral 
curve is now closed and may be connected to (figure 2 c )  or disconnected from (figures 
1 and 2 d )  the stationary neutral curve. 
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FIGURE 2. One route to disconnectedness. (a) Oscillatory neutral curve connected to stationary 
neutral curve at two bifurcation points; one frequency per wavenumber. ( b )  Same as ( a ) ,  except 
that oscillatory neutral curve has two frequencies a t  some wavenumbers. ( c )  Oscillatory neutral 
curve is closed (two frequencies at each wavenumber) but is still connected to stationary neutral 
curve. ( d )  Oscillatory neutral curve is closed and disconnected from the stationary neutral 
curve. 

2.3. Topology of the stability boundaries 

It follows from the topology of the disconnected neutral curves, as shown in figures 
1 and 2 ( d ) ,  that there exist combinations of R,, R,, Pr, r2 and 7, for which three 
values of R ,  are required in order to specify linear stability criteria. Clearly, one has 
stability for R, < Rlg1  and for Rl ,2  < R, < R,>,, and instability otherwise. Thus, the 
stability boundary in the (R,, R2)- or (Rl, R,)-plane (with all other parameters held 
fixed) may be a multivalued function of R, or R,, as observed earlier (Pearlstein 
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1981). In what follows, we shall discuss the case where R,, Pr,  72 ,  and 7, are held fixed, 
and the stability boundary in the (R,, R,)-plane is computed. 

In all of the results that follow, the vertical wavenumber n is set to 1 for the 
oscillatory neutral curves. Although the validity of this assumption has not been 
established conclusively for the triply diffusive case, it has been proved that 
consideration of n = 1 is sufficient for the Rayleigh-BBnard problem (Chandrasekhar 
1961), the rotating Rayleigh-Be’nard problem (Chandrasekhar 1961), and the doubly 
diffusive case (Baines & Gill 1969). Also, for the rotating doubly diffusive case 
(Pearlstein 1981), exhaustive numerical work proved that n = 1 was the only 
relevant case for all parameter values examined. 

For each R,, we use (2.6) to compute R:crit for the onset of steady convection. We 
then establish whether oscillatory instability can occur at a lower value of R,. To do 
this, we determine the existence of any bifurcation points (k,,, kb2) or points of 
infinite slope (ksl ,ks2) in the (R,, k)-plane and, as appropriate, compute the real 
solution(s) RY, if any, of (2.13) and (2.14). For each such real solution lying below 
R;gcrit, we compute w2 from (2.10), using k = n/42 for the solution(s) of (2.13), and 
the solutions of (2.15) for k (with n = 1) for the values of R: satisfying (2.14). It is 
clear from (2.15) and the discussion subsequent thereto that fi4 > 27x4/4 is a 
necessary condition for the existence of meaningful ( E  > 0) solutions of (2.14). Then, 
according to the number of real values of R: to which there correspond a real 
frequency and a real wavenumber, we may have one or three critical values of R, for 
each R,. Stability boundaries in the (R,,R,)-plane are obtained in a similar 
manner. 

3. Results 
Certain triply diffusive systems exhibit behaviour qualitatively different from that 

seen in singly or doubly diffusive cases. One example, discussed later in this section, 
is that of a triply diffusive layer for which three critical Rayleigh numbers are 
required to specify linear stability criteria. For other parameter values, not only are 
three critical Rayleigh numbers required to specify the linear stability criteria, but 
also the oscillatory neutral curve is heart-shaped. These two results have important 
consequences and will be discussed in this section. 

In previous work on the triply diffusive problem, Griffiths ( 1 9 7 9 ~ )  described 
stability boundaries which require a single critical value of R ,  to determine linear 
stability or instability when the transport property ratios and R, and R, are fixed. 
He overlooked the case for which three critical values of R, are needed, as well as the 
existence and implications of closed, disconnected, and heart-shaped oscillatory 
neutral curves. The stability boundaries we discuss below are clearly not parts of a 
surface in Rayleigh number space which ‘is very closely approximated by its planar 
asymptotes ’. 

The case where the fluid layer’s transport property ratios are set at Pr = 10.2, 7, = 
0.22, and 7, =, 0.21 leads to some interesting results. Figure 3(a) shows the stability 
boundary RYt as a function of R, for fixed R, = 814.1119. This boundary can be 
examined separately in three regions of R,. To the left of the cusp (A) lies a range of 
(simple) oscillatory onset, which, for these values of Pr, 7,, 7,, and R,, occurs for 
R, < -944.55. Here, oscillatory instability sets in at  a lower value of R, than does 
stationary instability, and there is a single critical value of R,. To the right of the 
point of infinite slope (B), for R, > -943.15, is a region in which the onset of motion 
is predicted to occur via monotonically growing disturbances and there is a single 
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-1020 -990 -960 -930 -900 -945.0 -944.5 -944.0 -943.5 -943.0 

R2 R, 
FIGURE 3. (a) (R,,R,)-stability boundary for R, = 814.1119, with Pr = 10.2, T~ = 0.22, 

and 73 = 0.21. ( b )  Expanded view of the multivalued region. 

critical value of R,. The intervening region is the most interesting and is shown 
enlarged in figure 3(b). It is seen that the single-valued stat,ionary (R, > -943.15) 
and oscillatory (R, < -944.55) portions of the stability boundary do not merely 
intersect, but instead give rise to a multivalued (Ryt,R,)-curve. For -944.55 < R, 
<-943.15, three critical values of R, are needed to specify the linear stability 
criteria. Thus, in this range of R,, as R, passes from below through the lower 
(oscillatory) branch of the stability boundary, the layer becomes unstable, regains its 
stability (on a linear basis) upon crossing the middle (oscillatory) branch, and finally 
becomes unstable again above the uppermost (steady onset) branch of the stability 
boundary. 

Moreover, the stability boundary in figure 3 ( a )  is qualitatively different from the 
multivalued (R:rit, R,)-stability boundaries found in the rotating doubly diffusive 
problem (Pearlstein 1981) in that in the latter case, multivalued stability boundaries 
correspond to either three values of R P  for a given R, or three values of R, for a 
given R,. In no case examined were both Rayleigh numbers found to be multivalued 
functions of the other. In  the triply diffusive case, however, each of R, and R, can be 
a multivalued function of the other, for R,, Pr, 7,, and 73 fixed. This is of interest from 
the standpoint of a laboratory experiment and will be discussed in $4. 

Figure 4(a) shows the (R,,R,)-stability boundary for R, = -943 and the same 
values of Pr, 7,, and 7,. Figure 4(b), which enlarges the multivalued portion of figure 
4(a), clearly shows that three critical values of R, are needed to specify the linear 
stability criteria in a finite range of R,. 

Figure 5 (ua) shows the evolution of neutral stability curves for the same transport 
property ratios (Pr = 10.2, 7, = 0.22, and 73 = 0.21). Here, R, has been fixed at 
814.1119 and R, is varied. Figure 5(a-c) shows that the oscillatory neutral curve is 
connected to the stationary neutral curve at two bifurcation points which move 
closer together as R, is increased, as in the doubly diffusive case with (Pearlstein 
1981) and without (Baines & Gill 1969) rotation. In  figure 5 (c ) ,  the oscillatory neutral 
curve loses its single-valued character, which has no physical significance because the 
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FIQURE 4. (a )  (R,,R,)-stability boundary for R, = -943, with Pr = 10.2, r2 = 0.22, and 7, = 0.21. 
( b )  Expanded view of the multivalued region. 

single critical R, remains a t  the minimum of the oscillatory neutral curve. At a value 
of R, between those shown in figures 5 ( c )  and 5(d ) ,  the bifurcation points move 
together and coalesce, resulting in the formation of a closed, heart-shaped oscillatory 
neutral curve which has become disconnected from the stationary curve. 

In figures 5 ( e )  and 5(f), the twin maxima (RY vs. k) of the closed, heart-shaped, 
disconnected, oscillatory neutral curve move below the minimum of the stationary 
neutral curve. The significance of the heart-shaped neutral curve in figure 5 ( f )  is 
twofold. First, as in the rotating doubly diffusive case (Pearlstein 1981), three critical 
values of R, are needed to specify the stability criteria. Second, as R, decreases below 
the minimum on the stationary neutral curve and approaches the twin maxima on 
the oscillatory neutral curve, the onset of oscillatory instability occurs a t  two 
different wavenumbers and, as discussed later, a t  two different frequencies, a t  the 
same value of R,. As R, is changed in figure 5V-h)) the closed oscillatory neutral 
curve loses its heart shape and becomes a closed convex curve. Three critical values 
of R, are still required, however. At a value of R, between those shown in figures 5 (h) 
and S ( i ) ,  the closed oscillatory neutral curve collapses to a point and subsequently 
disappears, leaving only the stationary neutral curve. It is easily shown that the 
collapse occurs at k = n/2/2. 

Figure 6 is a schematic description of how the critical values of R, and k change 
as R, is varied, with the values of Pr, T,, r,, and R, corresponding to those employed 
in figure 5 ( a i ) .  The lower curve AB shows the lowest point on the oscillatory neutral 
curve, which, in this range of R,, is still connected to the stationary neutral curve 
a t  the two bifurcation points. Points E, G, and F correspond to the value of R, a t  
which the twin maxima of the heart-shaped oscillatory neutral curve and the 
minimum of the stationary neutral curve occur at the same value of R,. The curves 
ED and FD correspond to the maxima of the heart-shaped oscillatory neutral curve 
which approach each other and coalesce a t  D, yielding a closed convex oscillatory 
neutral curve. At C, the oscillatory neutral curve collapses to a point and, as R, is 
increased, ceases to exist. The ray beginning a t  G and passing through H corresponds 
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FIGURE 6. Schematic description of the relation between RYit, R,, and k,,, for R ,  = 814.11 19, 
Pr = 10.2, r2 = 0.22, and r3 = 0.21. 

- 945 - 944 - 943 
R, 

FIGURE 7 .  Onset frequencies for a range of R,, with R,  = 814.1119, Pr = 10.2, r2 = 0.22, 
and T ,  = 0.21. 

to the minimum of the stationary neutral curve on the semi-infinite range of R, for 
which steady onset can occur. Figure 5 ( f )  shows the cross-section in the plane P for 
R, = -944.3, R, = 814.1119, Pr = 10.2, T ,  = 0.22, 7, = 0.21. 

For the same values of R,, Pr ,  r2, and T,, figure 7 shows the onset frequency in the 
range of R, in which three critical values of R, are required to specify the linear 
stability critera. Point B corresponds to the onset frequency a t  the R, a t  which the 
disconnected oscillatory neutral curve collapses to a point. The branch BE is the 
onset frequency at the maximum of the closed, convex oscillatory neutral curve 
found in this region of R,. At E, the closed, convex oscillatory neutral curve flattens 
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FIGURE 9. (R,,R2)-stability boundary for R, = 80, with Pr = 625, r2 = 0.8125, T~ = 0.28125. 

out at the top and then becomes heart-shaped as R, is decreased. The curves EC and 
ED correspond to the different onset frequencies at the twin maxima of the heart- 
shaped neutral curve. The points C and D occur at the R, for which the twin maxima 
of the heart-shaped neutral curve move above the minimum of the stationary 
neutral curve, beyond which point there is only one critical value of R, and only one 
onset frequency, both corresponding to the minimum of the oscillatory neutral 
curve. This is the branch BA. 

Another interesting case occurs when the transport property ratios are set at 
Pr = 2, r2 = 2, and ra = 0.66666, with R, = 7874. Figure 8(a ,  b )  shows the oscillatory 
neutral curve, at each wavenumber lying below the stationary neutral curve, to 
which it is attached at  two bifurcation points which move toward each other as R, 
increases. When R, is increased further (figure 8 c ) ,  the two bifurcation points 
coalesce and part of the closed oscillatory neutral curve lies above the stationary 
neutral curve. In figure S(c) ,  the upper branch of the oscillatory neutral curve closely 
follows the stationary neutral curve and remains largely above it, as shown on an 
expanded scale in figure S(d). As R, is increased (figure 8e),  the oscillatory neutral 
curve loses its heart shape and becomes a closed convex curve; part of it remains 
above the stationary neutral curve. Figure 8 (c-e) shows that one may have a closed 
oscillatory neutral curve that is not disconnected from the stationary neutral curve. 
The points at which the oscillatory and stationary neutral curves intersect are not 
bifurcation points, as the frequency on the closed oscillatory neutral curve vanishes 
nowhere. In figure 8(f), the oscillatory curve moves below the minimum of the 
stationary curve so that three critical values of R, are now needed to specify the 
linear stability criteria. If R, is increased further, the oscillatory neutral curve 
eventually collapses to a point and disappears. 

The values of the transport property ratios and Rayleigh numbers discussed so far 
were chosen so as to allow for a clear graphical presentation of the results. Heart- 
shaped neutral curves lying below the minimum of the steady neutral curve can 
also be obtained for the values of Pr, T,, and r3 appropriate to the isothermal 
KCl-NaCl-sucrose-H,O system studied theoretically and experimentally by Griffiths 
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(1979a-c). Figure 9 shows an (R,,R,)-stability boundary for Pr = 625 (corresponding 
to  the Schmidt number for NaCl in H,O), 7, = 0.8125, and 73 = 0.28125, for R, = 80. 
In the range of R, for which the stability boundary is not a single-valued function of 
R,, the oscillatory neutral curve is disconnected from the steady neutral curve, as 
shown in figure 10(a). Over a smaller part of that range, the oscillatory neutral curve 
is heart-shaped and lies entirely below RYCit, as shown in figure 10(b, c).  

4. Discussion 
The present analysis reveals a number of striking features not found in the doubly 

diffusive case or in the previous work on the triply diffusive problem. These 
include : 

(i) the existence of a finite range of linearly stable R,, in addition to the usual semi- 
infinite range ; 

(ii) the onset of oscillatory instability at a given value of R, for two different values 
of the critical wavenumber and two different onset frequencies ; and 

(iii) the existence of stability boundaries in the (R1,R3) (or R,,R,)-plane that are 
multivalued functions of both R, and R, (or R, and RJ. 

Result (i) was previously obtained for a rotating doubly diffusive fluid layer 
(Pearlstein 1981) and is associated with the fact that both the triply diffusive layer 
and the rotating doubly diffusivelayer can each support two ' overstable ' instability 
mechanisms (and, hence, two non-zero frequencies a t  the same wavenumber when 
one examines the neutral stability curve). 

Result (ii) requires the existence of a heart-shaped oscillatory neutral curve (not 
seen in the rotating doubly diffusive case) and is of special interest because it offers 
the possibility of observing fairly complicated dynamics at the onset of instability. 
Referring to figure 1 ,  (or figure 5 ( f ) ,  we consider an experiment in which R, is 
reduced from a (linearly) stable value between Rl,2 and RIs3 to  an unstable value 
lying between R,,, and R,,,. If the onset of instability a t  R,,, occurs via the growth 
of infinitesimally small disturbances, then two distinct disturbances with different 
frequencies and wavenumbers simultaneously become unstable. Thus, in contrast to 
the usual Hopf bifurcation in which a pair of complex-conjugate eigenvalues cross 
the imaginary axis into the right half-plane, we shall in this case have two pairs of 
eigenvalues crossing. As shown in figure 7 ,  the two frequencies (each corresponding 
to the absolute value of the imaginary parts of a set of complex-conjugate 
eigenvalues) are unequal along branches EC and ED, and are in general 
incommensurable. By analogy to the nomenclature of Moroz (1989), we shall refer to 
this as a ' Hopf-Hopf' bifurcation. 

This raises the possibility of bifurcating solutions that are qua,&-periodic in time 
and space at the onset of motion. Previous studies in which two distinct pairs of 
complex-conjugate eigenvalues simultaneously cross the imaginary axis and lead to 
' quasi-periodic bifurcation ' directly from a steady solution include systems of first- 
order nonlinear ordinary differential equations (Bauer, Keller & Reiss 1975 ; Cohen 
1977; Steen & Davis 1982) and a model problem for the Navier-Stokes equations 
(Iooss 1976). Quasi-periodic bifurcation can also occur in a rotating conducting 
fluid layer subjected to a vertical magnetic field (A. J. Pearlstein & F. H. Busse, 
unpublished). In  the language of Bauer et al., the value of R, at the twin maxima is 
a multiple primary bifurcation point and is so called because at this R, the 
(motionless) base state bifurcates into two primary states and thus has a multiplicity 
(as a bifurcation point) of two. 



Convective instability in a triply diffusive Jluid layer 46 1 

The dynamical behaviour possible in the triply diffusive problem is potentially 
richer than that inherent in the previous cases of quasi-periodic bifurcation in several 
respects. The most remarkable is that the two pairs of temporal eigenvalues that 
cross the imaginary axis in the present case are associated with two different (and 
generally incommensurable) horizontal wavenumbers. Thus the (temporally) quasi- 
periodic bifurcation may also be quasi-periodic in space. Moreover, as discussed in 
$2.2, when the oscillatory neutral curve has twin maxima, they always occur a t  the 
same value of the bifurcation parameter R, (which of course depends on the control 
parameters, R,, R,, T,, 7,, and Pr). Thus, if ‘ quasi-periodic onset ’ does occur, it will 
still be a codimension-one bifurcation and will occur over a range of the control 
parameters. In  the previous cases, the simultaneous crossing of the imaginary axis 
by four eigenvalues occurred via the tunable coalescence of two primary bifurcation 
points of multiplicity one. Thus the multiple primary bifurcation point occurred a t  
a codimension-two point and could be realized only by proper choice of two control 
parameters. 

If one is interested in looking a t  bifurcation in the triply diffusive case under 
‘resonance ’ conditions on either the frequencies or wavenumbers, this should be 
achievable by proper tuning of two control parameters. That is, it  should be possible 
to adjust either the two wavenumbers or the two frequencies so that they are 
commensurable. By proper tuning of three control parameters, it should be possible 
to make both the frequencies and wavenumbers commensurable. 

Result (iii) implies that the onset of convection may occur on a path in the (Rl, R,) 
(or R,, R,)-plane with R, (or R,) fixed, along which the constant gradients of both 
of the other stratifying agencies are simultaneously changed in such a way that they 
are individually made more hydrostatically stable. Like results (i) and (ii), this 
cannot occur in the doubly diffusive case and was not observed in the previous work 
on the triply diffusive problem. 

4.1. Experimental considerations 

In this section, we consider some of the factors that will determine the physical 
realizability of the predictions of the foregoing linear stability analysis. We begin by 
discussing the parameter space in which experiments might need to be conducted. 

We first note that 7, = 1 and 7, and 7, are positive, so that only a single ( ~ ~ , 7 , ) -  

quarterplane in the positive octant of the (7,,  T,, 7,)-space need be considered. From 
(2.3), the entire problem is seen to be invarant under any permutation of the indices, 
so that results in one half (say, 7, > 7,) of this quarterplane are obtainable from 
results in the other half (say, T~ < 7,). 

From (2.8a, b) ,  we see that if stratifying agency 3 is the most rapidly diffusing 
[T, > max ( ~ ~ ~ 7 ,  = l)], then two frequencies (and a closed disconnected neutral 
curve in the (R,,L)-plane can exist only if R, is positive (i.e., agency 3 is 
destabilizing). Similarly, we require R, > 0 if agency 3 is the slowest diffusing. By like 
reasoning, we must have R, > 0 if species 2 is the fastest or slowest diffusing. Finally, 
if agency 2 (or 3) has an intermediate diffusivity (between those of the other two 
agencies), then we must have R, < 0 (or R, < 0) .  In  any case, we observe (from $2.2) 
that for any triply diffusive Jluid, the necessary conditions for the existence of a closed 
and disconnected neutral curve are satisjied in exactly one of the Jirst, second, or fourth 
quadrants of the (R,, R,)-plane. Of course, these are only necessary conditions for the 
existence of two frequencies, for some range of wavenumbers, and do not ensure the 
existence of closed, disconnected neutral curves (see, e.g. figures 5c and 8a-e). 

This discussion and the numerical results (cf. figures 3 and 4 for 7, = 0.22, 
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r3 = 0.21, and figure 8 for r2 = 2, 7, = 0.66666) are consistent with the hypothesis that 
a necessary condition for the existence of two frequencies at the same wavenumber 
(i.e. a necessary condition for a disconnected neutral curve) is as follows. When the 
stratifying agencies are ordered by decreasing diffusivity (with r1 = l) ,  then the 
Rayleigh numbers, when arranged with their indices in the same order as the indices 
of the diffusivities, must alternate in sign, with the fastest diffusing agency being 
destabilizing. Thus, for example, with r2 = 0.22 and 73 = 0.21, we get R, > 0, R, < 0, 
and R, > 0. The alternating Rayleigh number hypothesis and its natural extension 
to  an N-tuply diffusive fluid are entirely consistent with the analytical and numerical 
results for a quintuply diffusive fluid layer (Terrones 1987), in which one may obtain 
two disconnected oscillatory neutral curves (corresponding to four frequencies a t  the 
same wavenumber). 

From these considerations and the numerical results, it appears that multi- 
valuedness puts no restrictions on the values of 72 and 73, other than that they be 
unequal and different from unity. This is to  be contrasted with the rotating doubly 
diffusive case (Pearlstein 1981), for which i t  was shown (from conditions analogous 
to (2.8a, b ) )  that multivaluedness could occur only for Pr < 1 < Sc or Sc < 1 < Pr. 
(Here, we discuss the rotating doubly diffusive case in terms of a fluid in which the 
two stratifying agencies are heat and a solute, and Sc is the Schmidt number of the 
latter.) This restriction had the effect of limiting the search for multivalued stability 
boundaries to binary liquid metals. In  the triply diffusive case, no such limitation 
occurs, and multivaluedness can be found for Pr > 1 with Sc, > 1 and Sc, > 1 ,  where 
Sci = Pr/7i (see figures 3-5). 

Given a fluid layer with values of Pr, r,, and 7, appropriate for the existence of a 
multivalued stability boundary in some part of the (R,, R,, R3)-space, we shall now 
discuss the other factors that determine the experimental realizability of the 
multivaluedness, as well as the quasi-periodic bifurcation from the motionless state 
discussed in $4. 

One of the factors to  be considered is the assumption of stress-free boundaries a t  
the top and bottom of the layer. From previous comparisons of the linear stability 
theory for convective stability problems with stress-free and rigid boundaries, we 
expect that the qualitative features predicted for the stress-free case should carry 
over to  the more realistic rigid case. Thus, we would expect that  the existence of 
multivalued stability boundaries will be a feature of the linear analysis for rigid 
boundaries. As for the quasi-periodic onset, this is a characteristic associated with 
the heart shape of the disconnected oscillatory neutral curves. Although we expect 
the heart shape to  persist, there is no assurance that the twin maxima (at R,  = R1,,) 
in the schematic figure 1 ; see also figure 5 (f) will occur a t  the same value of R, in 
the rigid case. This question is the subject of a separate investigation (A. J.  
Pearlstein, A. R. Lopez, and L. A. Romero, unpublished). 

A related issue is the effect of alternative boundary conditions on the stratifying 
agencies at the upper and lower walls. The most serious problem in an experimental 
realization of the basic state considered herein, and earlier by Griffiths (1979a) and 
Moroz (1989), is that of prescribing the concentrations of one or more diffusing 
species a t  a boundary. This might be done by making the horizontal walls from a 
semipermeable membrane, through which solute can pass into the working fluid 
volume. If the fluid on the other side of the membrane was maintained a t  a constant 
concentration, and there were no significant mass transfer limitations normal or 
tangential to  the membrane, then the concentration boundary conditions prescribed 
in the present analysis could be realized to within a good approximation. 
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Experiments employing such a membrane have been conducted by Krishnamurti & 
Howard (1983). 

A final point concerning the boundary conditions is the imposition of thermal 
boundary conditions other than the constant-temperature ones considered here. 
Constant-flux conditions (corresponding to adiabatic conditions on the disturbance) 
in the doubly diffusive case in a two-dimensional box are known to lead to degenerate 
bifurcations involving two incommensurable frequencies and two commensurable 
wavenumbers (Leibovich, Lele & Moroz 1989), with important consequences for the 
nonlinear development of convection. Given that the isothermal conditions 
considered herein support a ‘ Hopf-Hopf’ bifurcation, it seems likely that other 
thermal boundary conditions will lead to even more complicated behaviour. 

A second factor to be considered is the possible onset of motion via disturbances 
of finite amplitude. To observe the multivaluedness of the stability boundary, it is 
essential that below the minimum of the stationary neutral curve there exists a finite 
range of R, in which the layer is stable with respect to those finite-amplitude 
disturbances to which it is subject. With reference to figure 1, it is necessary that 
some part of the linearly stable range R,,, < R, < R,,, be stable with respect to 
disturbances of some non-vanishing magnitude. 

Recently, Moroz (1989) has conducted a nonlinear stability analysis of a triply 
diffusive fluid layer, with the same boundary conditions and basic state considered 
herein. She has used an expansion in Fourier modes to derive a set of nonlinear 
ordinary differential equations for the modal amplitudes. The centre manifold and 
normal form theorems were then used to study several multiple bifurcations. The 
dynamical behaviour near the Hopf-Hopf point can be treated by a similar 
formulation (capable of dealing with modes at two different wavenumbers), but is 
beyond the scope of the present work. 

Finally, bifurcating solutions that are quasi-periodic in space and time will be 
observable only if they are stable as R, is reduced below R17 ,. This question, and the 
issue of subcritical instability discussed above, remain to be investigated. 

4.2. Nature of the instability mechanism 
As explained elsewhere (Turner 1973, 1974) instability can occur in a hydrostatically 
stable doubly diffusive fluid that is ‘ bottom-heavy ’ in the more slowly diffusing 
(stratifying) agency and ‘top-heavy ’ in the more rapidly diffusing agency. The 
mechanism of the instability can be described in terms of the existence of an overly 
large restoring force on a displaced fluid parcel. 

From the above discussion, it might seem useful to discuss the triply diffusive case 
in terms of pairs of stratifying agencies. In the present case, there are three such 
pairs. That there are only two overstable diffusive modes might be ascribed to the 
fact that the stratifying agencies cannot be arranged so that more than two pairs are 
bottom- and top-heavy with, respectively, the slower and faster diffusing agency of 
the pair. One might suppose that, as in the rotating doubly diffusive case, the 
frequency of one of the overstable mechanisms can be ‘tuned’ by the other, so that 
it operates more efficiently (i.e. leads to instability at a smaller Rayleigh number) 
than would otherwise be the case, This could then lead to destabilization by a 
nominally ‘stabilizing ’ force, as discussed by Acheson (1980), and to non-monotonic 
(R,, R,) (or R,, R,)-stability boundaries (Pearlstein 1981). 

Unfortunately, an explanation of the disconnected neutral curves in terms of two 
diffusive modes interacting with each other is not tenable in the triply diffusive 
problem because of the relationship between the diffusivities and the Rayleigh 
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numbers discussed in $4.1. We showed there that when a disconnected neutral curve 
occurs, the arrangement of the stratifying agencies is such that the fluid is top-heavy 
in the fastest diffusing agency, bottom-heavy in the next fastest agency, and top- 
heavy in the slowest diffusing agency. Thus, it is not possible to select two pairs of 
‘diffusive ’ modes. Hence, we conclude that the existence of a closed, disconnected, 
oscillatory neutral curve, and the consequences that follow therefrom, is not simply 
the result of the interaction of a pair of independent ‘diffusive ’ modes, one of which 
‘tunes’ the other, as in the rotating double diffusive case. 

The authors acknowledge helpful discussions with M. Choudhari, S. H. Davis, 
B. J .  Matkowsky, and I. M. Moroz. This work is based in part on the M.S. thesis of 
the second author (Harris 1985) and was first presented at  the APS-DFD Meeting in 
Providence, R.I. in November 1984 (Pearlstein & Harris 1984). The authors are 
grateful to the National Science Foundation for support provided by Grants ENG 
79-02630, MEA 82-04944 (both to R. E. Kelly), and MSM-8451157. 
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